Fairness-aware radio resource management in downlink OFDMA cellular relay networks
Relaying and orthogonal frequency division multiple access (OFDMA) are the accepted technologies for emerging wireless communications standards. The activities in many wireless standardization bodies and forums, for example IEEE 802.16 j/m and LTE-Advanced, attest to this fact. The availability or lack thereof of efficient radio resource management (RRM) could make or mar the opportunities in these networks. Although distributed schemes are more attractive, it is essential to seek outstanding performance benchmarks to which various decentralized schemes can be compared. Therefore, this paper provides a comprehensive centralized RRM algorithm for downlink OFDMA cellular fixed relay networks in a way to ensure user fairness with minimal impact on network throughput. In contrast, it has been observed that pure opportunistic schemes and fairness-aware schemes relying solely on achievable and allocated capacities may not attain the desired fairness, e.g., proportional fair scheduling. The proposed scheme is queue-aware and performs three functions jointly; dynamic routing, fair scheduling, and load balancing among cell nodes. We show that the proposed centralized scheme is different from the traditional centralized schemes in terms of the substantial savings in complexity and feedback overhead.